Derivada de una función en un punto
Sea una función y = f(x) y x0 un punto del eje X. Si se toma un punto x0 + h muy próximo a x0 (h es un número infinitamente pequeño), a medida que se hace tender h a cero, la recta secante (en rojo de la figura) que une los puntos( x0, f(x0 ) ) y ( x0 + h, f(x0 + h) ), tiende a confundirse con la tangente (en azul de la figura) a la curva en el punto (x0,f(x0 )).
que determina la tangente con ese mismo eje, en el triángulo rectángulo de vértices
![]()
Al hacer tender h a cero, y puesto que la secante tiende a confundirse con un segmento
de la tangente, es decir, si miras la figura, al hacer que h tienda a cero la línea roja se acerca a la línea azul por lo que:
tg ah tiende a tg a, es decir,
a la pendiente de la tangente a la curva en el punto (x0,f(x0 )).
Esto se expresa matemáticamente así:
Sea una función y = f(x) y x0 un punto del eje X. Si se toma un punto x0 + h muy próximo a x0 (h es un número infinitamente pequeño), a medida que se hace tender h a cero, la recta secante (en rojo de la figura) que une los puntos
( x0, f(x0 ) ) y ( x0 + h, f(x0 + h) ), tiende a confundirse con la tangente (en azul de la figura) a la curva en el punto (x0,f(x0 )).
![]()
que determina la tangente con ese mismo eje, en el triángulo rectángulo de vértices
(x0,f(x0 )), (x0 + h,f(x0 + h)) y (x0 + h,f(x0 )), se verifica:
![]()
Al hacer tender h a cero, y puesto que la secante tiende a confundirse con un segmento
de la tangente, es decir, si miras la figura, al hacer que h tienda a cero la línea roja se acerca a la línea azul por lo que:
tg ah tiende a tg a, es decir,
a la pendiente de la tangente a la curva en el punto (x0,f(x0 )).
Esto se expresa matemáticamente así:
| NOTA: Es importante que entiendas esto, pues es el núcleo por el que después entenderás otros conceptos, si no es así, dímelo |
Derivada de una función en un puntoDada una función y = f(x), se llama derivada de la función f en un punto x0 alf '(x0 ) (efe prima de equis sub-cero) o por D(f(x0 )):
![]()
Cuando este límite existe (y es finito) se dice que la función f(x) es derivable en el punto x0.
Ejemplos
Calcular la derivada de la función f(x) = 3x2 en el punto x = 2.



INTEGRANTES:
- CARLOS ENCALADA
- RICARDO IRRAZABAL
- SARAY ENGRACIA
- ERICK ANDRADE BRIONES
- ANTONIO LAJE
No hay comentarios.:
Publicar un comentario